The HEVC video encoding (High Efficiency Video Coding), also known as H.265 or MPEG Part 2, is developed to succeed the widely adopted H.264 standards. HEVC offers much enhanced coding efficiency to support up to 8K UHD to meet today’s high demands for video resolutions. Today, content providers driven by IPTV and OTT platforms have quickly taken advantages of this next-generation video transcoding technology to improve their broadcasting services and user experience.

Nowadays cyber threats have evolved to be highly sophisticated and often bypassed traditional malware detection through advanced masking and hiding of malicious intent. In order to mitigate such vulnerability, there is an increasing number of enterprises adopting sandboxing approach.

As enterprises have relied more and more on cloud applications, network outages can be a great deal of pain in both financial and reputation aspects. In fact, due to the increasing uses of mobile devices and wireless connections, communication service providers (CSPs) have been seeking network changes to upgrade their infrastructures in order to meet emerging demands and assure quality of service (QoS).

Carrier-grade NAT, also known as LSN (Large-Scale NAT), is an advanced network development to address the current bottlenecks of IPv4 and facilitates the communication between IPv4 and IPv6 protocols, and thus accelerates the transition to the latter. With the explosion of Internet consumption from mobile devices, the 32-bit address space of IPv4 is virtually insufficient to accommodate the rapidly rising demands for IP addresses. Thus, CGN has been developed to extend the use of 32-bit address space of IPv4 through address and protocol translation.

As the demand for network bandwidth continues to accelerate, telecom operators are constantly challenged to meet client needs driven by video streaming, additional devices, and the cloud. Carriers can now meet those needs with netElastic Virtual Broadband Network Gateway (vBNG) software and white box servers from Lanner.

Since the emergence of globalization, maritime activities have dramatically increased and become diversified. In fact, maritime traffic has been busier than ever, contributed by diverse maritime activities, such as shipping cargos, fishing boats, coastal patrols and even leisure cruise ships traveling across multiple seas. Therefore, the demand for secure and resilient communications has been urged for the connectivity and security for both crews and passengers. In fact, the next-generation network system must integrate all the protocols, including satellite, VSAT, terrestrial, telephone, microwave, radio frequency and 4G/LTE, to establish communications aboard, as well as between land and sea.

Since the introduction of the cloud technology, there is a rapidly growing number of enterprises and government organizations adopting cloud-first approach, in which business applications are run and delivered on the cloud. As they launch more and more Apps and expand their operations, the WAN will play a key factor in this cloud-first competition.