Eagle-Lanner tech blog


New applications are demanding more network and compute performance, requiring high-performance compute, acceleration, flexible storage, and networking. 5G has a shorter transmission distance capability and require higher frequency bands, which requires more 5G antenna sites. In addition to existing tower infrastructure that needs to be modernized to allow for a more distributed and adaptable network. This further drives the need for servers to be optimized for outdoor installations, deployed outdoors on utility poles or on building walls.

Wireless was first introduced as a “nice to have” feature, but by today, Wi-Fi connects well over thousands different types of devices. According to recent analyst reports, demand for connected devices is expected to unleash over billions of IoT devices generating over zettabytes (ZB) of data at the edge. As we enter into a new wireless era where everything can be connected, Wi-Fi 6 becomes a critical foundation for digital transformation and handling high-density environments.

Organizations and enterprises are increasingly requiring an edge networking platform that not only prioritize end-user experience, holistically manage their WAN and LAN for automated management, and integrate high-level security features. AIOps (artificial intelligence for IT operations) are multi-layered technology platforms that automate and enhance IT operations through analytics, machine learning, and artificial intelligence – can handle these digital transformation issues. 

Network operators have adopted network element management systems (NEMS) and network management systems (NMS) to ensure streamlined interoperability and information transmission across the complex multiple operating systems and telecommunication networks.

The introduction of Wi-Fi 6E represents a significant improvement over previous Wi-Fi generations and together with high-speed 5G networks will be able to meet all related data transmission needs. Both promising to deliver higher performance, lower latency and faster data rates, making them even more suitable to power video streaming, virtual reality, cloud computing, and IoT next-gen devices.

Fronthaul architecture configurations are able to balance the reliability, throughput, and latency demands of advanced applications on 5G networks. Fronthaul layered architecture, depending on the type of data handling needed, is distributed across the network between edge data centers and central data centers.

5G together with edge computing, has the ability to timely handle, process, and analyze large amount of data, which leverages the full potential of advanced technologies such as autonomous vehicles, and the Internet of Things (IoT). Autonomous vehicles will change the experience of riding in cars, making it more pleasant, less stressful and more productive.