
Enterprise Network Security
Solution Provider, Independent Software Vendor

Lanner Delivers AI Security
Appliance for Network Edge

Solution Brief

In the last 10 years, firewalls have evolved and added new features to provide better
defense against fast changing cybersecurity threats.

Firewalls were originally designed to examine inbound packet payloads against a
static database of security policies and rules to allow or deny access to the enterprise
network based on those rules. With improvements in virtualization software and
CPU performance, firewalls can do this packet inspection at wire speed on Intel®
architecture CPUs.

Firewalls are placed at network ingress points and thus are the first line of defense.
Because of the importance of the firewall, technology has evolved to add new security
services that can leverage packet lookup and database capabilities. These next
generation firewalls (NGFW) combine firewall capabilities with other security services
including antivirus, intrusion protection system, application identification and others.

Now NGFWs are evolving again to stay ahead of a new class of cybersecurity threats
such as ransomware, zero-day attacks, phishing attacks as well as to do a better job
against ongoing threats such as distributed denial of service (DDoS) attacks. This
firewall evolution uses artificial intelligence / machine learning (AL/ML) to make
the rules database more dynamic. New AI-NGFWs now feature AI-driven detection
capabilities that can help it recognize and react to cyber threats more quickly.

With this capability, the AI-NGFW can be trained on a massive database of known
threats that allows it to infer new threat variants and respond automatically to stop
a threat. The use of AI also allows the NGFW to efficiently respond to threats.

NGFWs have long been deployed in branch offices and other locations at the edge
of the network in order to harden these potential paths for a cyber-attack. But adding
AI to these systems means increasing the compute performance required to run
these applications.

Lanner Electronics, an Intel® Network Builders ecosystem member, has developed
the NCA-4240, a network security appliance with the features and performance to
enable AI-powered NGFWs running in branch offices or network edge locations to
fortify these network locations with a system that can proactively monitor and adapt
to evolving cyber threats in real-time.

Lanner NCA-4240 Delivers Branch Office AI-NGFWs
The Lanner NCA-4240 is a 1U rackmount appliance (see Figure 1) that is designed
for branch office applications with power-efficient performance and extensive
networking. The server features a built-in 1 GbE RJ45 port via Intel® Ethernet
Controller I219 and eight 2.5 GbE RJ45 ports via an embedded Intel® Ethernet
Controller I226. Additional connectivity is available via a slot that can support a
discrete network interface card with speeds up to 100GbE.

Lanner NCA-4240, based on 14th Gen Intel® Core™ desktop processors, is optimized
with performance for AI-based next-generation firewall (NGFW) and cost, power
consumption, and form factor for branch office applications

1

Solution Brief | Lanner Delivers AI Security Appliance for Network Edge

Three pairs of Gen 3 bypass connections are available for
redundant out-of-band communications that is a requirement
to maintain communications if the networking ports are
disabled. With these bypass ports, traffic can continue to be
forwarded through the system.

The server has fast memory supporting up to 64GB of DDR5
4800 MHz RAM via two 288-pin DIMM, which is essential to
support the compute-heavy AI-NGFW workloads. For
storage, the server supports two 2.5” HDD/SSD storage
modules. The server can support additional features via PCIe
x8 or M.2 slots.

Performance from 14th Gen Intel® Core™
Desktop Processor Family
The Lanner NCA-4240 server is based on 14th Gen Intel Core
desktop processor family, which feature a hybrid architecture
combining performance-cores (P-cores) and efficient-cores
(E-cores), on a single processor die with a maximum of up to
24 cores (eight Performance-cores and 16 Efficient-cores)
and up to 32 threads. Models in the CPU family have a very
energy efficient 65 Watt thermal design power (TDP).

Integrated GPU for AI Processing
The CPUs offer enhanced AI processing power via an
integrated Intel® UHD Graphics 770 GPU. This iGPU
functionality uses the Intel® Xe Architecture to boost the
performance of AI applications by delivering faster inferencing
for network security workloads.

The GPUs feature 32 graphics execution units allowing a
high degree of parallelization for AI workloads, combined
with built-in AI acceleration from Intel® Deep Learning Boost
(Intel® DL Boost) and the Intel® Distribution of OpenVINO™
toolkit. The use of integrated GPU offers significant AI
performance to meet branch office requirements and offers
a cost-effective solution by bringing the overall total cost of
operation (TCO) down as it does not need a discrete GPU
card for AI.

The CPU also features PCIe 5.0 ready/PCIe 4.0 slots for
additional functionality, USB 3.2 Gen 2x2 ports and support
for discrete Wi-Fi 6E.

Figure 1. Lanner NCA-4240 front view.

Figure 2. NCA-4240 in a typical branch office AI-NGFW application.

2

Solution Brief | Lanner Delivers AI Security Appliance for Network Edge

As shown in Figure 2, the Lanner NCA-4240 empowers AI-
driven NGFWs at the enterprise edge. In this picture, data
traffic from network users (on the left) passes through the
NCA-4240 where all seven layers of each packet are examined
against the dynamic databases shown in purple. The use of AI
means these databases are updated based on AI training. The
performance of the server and its low power consumption
enables AI-based NGFWs from any third-party ISV to run on
the systems and improves the software’s capacity to identify,
counteract, and alleviate advanced and evolving cyber threats.

Test Set Up
To show the AI inference performance under NCA-4240,
Lanner and Intel chose to test¹ some typical AI-NGFW use cases
that utilize NGFW from four industry-leading vendors. The use
cases are email phishing and malware portable executable (PE).
The tests measured latency using three different AI frameworks:

TensorFlow, ITEX and Open VINO. The 14th Gen Intel® Core™
desktop processor inside the Lanner NCA-4240 was configured
in a number of ways to examine the performance using the iGPU
and the P-core and E-core. The iGPU offered significantly lower
latency figures at both FP32 and INT8 then either of the two
CPU cores tested.

For the PE tests, the open-source MalConv model was used
(https://github.com/elastic/ember/tree/master/malconv).
First, the H5 model was converted to the FP32 model and then
used Intel® Neural Compressor to quantize it to the INT8 model.
Detail codes and methods can be found in this downloadable
PDF. We benchmarked the NCA-4240 using one E-core and
one P-core.

From the results, the performance can be boost up to 3.03 x
and the inference time can be less than 11.48 ms by quantized
model to INT8 by using Intel Neural Compressor.

Framework Platform
Latency (ms)

Performance Improvement
INT8 vs FP32 W/oneDNNFP32 w/oneDNN INT8

TensorFlow
(2.14.0)

Lanner NCA-
4240

(Turbo on)

1 P-core 34.73 11.48 3.03 X

1 E-core 80.77 42.85 1.88 X

The tests used ITEX to offload the AI workload to iGPU to
further improve the AI inference performance. Here are the
steps (details can be found at https://github.com/intel/intel-
extension-for-tensorflow):

Step 1: Install iGPU driver, details steps can be found at (https://
github.com/intel/compute-runtime)

Step 2: Install Intel® oneAPI Base Toolkit 2024.0.0

wget https://registrationcenter-download.intel.
com/akdlm//IRC_NAS/20f4e6a1-6b0b-4752-b8c1-
e5eacba10e01/l_BaseKit_p_2024.0.0.49564.sh

sh l_BaseKit_p_2024.0.0.49564.sh

source /opt/intel/oneapi/compiler/latest/env/vars.
sh

source /opt/intel/oneapi/mkl/latest/env/vars.sh

Step 3:

apt install -y clinfo

clinfo //Check driver status with clinfo

apt install -y intel-gpu-tools

intel_gpu_top //# Inspect iGPU status and
monitor the GPU usage and frequency status.

From there it is possible to offload the AI workload from the
CPU to the iGPU with zero code changes by only running the
following command –

pip install intel-extension-for-tensorflow[xpu]
==2.14.0.2

Then iGPU can be used to do AI inference.

Framework Platform
Latency (ms) Performance Improvement

INT8 vs FP32 W/oneDNNFP32 w/oneDNN INT8

ITEX (2.14.0.2) Lanner NCA-
4240 iGPU 10.47 5.19 2.02 X

3

https://github.com/elastic/ember/tree/master/malconv
https://networkbuilders.intel.com/docs/networkbuilders/intel-deep-learning-boost-boost-network-security-ai-inference-performance-in-google-cloud-platform-gcp-technology-guide-1649707948.pdf
https://networkbuilders.intel.com/docs/networkbuilders/intel-deep-learning-boost-boost-network-security-ai-inference-performance-in-google-cloud-platform-gcp-technology-guide-1649707948.pdf
https://github.com/intel/intel-extension-for-tensorflow
https://github.com/intel/intel-extension-for-tensorflow
https://github.com/intel/compute-runtime
https://github.com/intel/compute-runtime

Solution Brief | Lanner Delivers AI Security Appliance for Network Edge

The AI inference latency can be further improved to 5.19ms.
That is 15.56X boost from using 1 E-core to using iGPU and
with zero code changes.

A similar test for phishing was also run using the bidirectional
encoder representations from transformers (BERT) model.
BERT is a neural network model that is trained to detect
phishing email from text within the email.

In this test, we used OpenVINO as deep learning framework
instead of TensorFlow. The following codes can use OpenVINO
NNCF to quantize the model.

import os

from pathlib import Path

import datasets

import numpy as np

import nncf

from nncf.parameters import ModelType

import openvino as ov

import torch

f r o m t r a n s f o r m e r s i m p o r t
BertForSequenceClassification, BertTokenizer

MODEL_DIR = “models”

os.makedirs(MODEL_DIR, exist_ok=True)

MAX_SEQ_LENGTH = 512

def load_model(inputs, input_info):

 ir_model_xml = Path(MODEL_DIR) / “bert-base-
cased.xml”

 core = ov.Core()

 torch_model = BertForSequenceClassification.
from_pretrained(‘bert-base-cased’)

 torch_model.eval

 # Convert the PyTorch model to OpenVINO IR
FP32.

 if not ir_model_xml.exists():

 model = ov.convert_model(torch_model,
example_input=inputs, input=input_info)

 ov.save_model(model, str(ir_model_xml))

 else:

 model = core.read_model(ir_model_xml)

 return model

def create_data_source():

 raw_dataset = datasets.load_dataset(‘glue’,
‘mrpc’, split=’validation’)

 tokenizer = BertTokenizer.from_pretrained(‘bert-
base-cased’)

 def _preprocess_fn(examples):

 texts = (examples[‘sentence1’],
examples[‘sentence2’])

 result = tokenizer(*texts, padding=’max_
le n g t h’, m a x _ le n g t h = M A X _ SE Q _ L E N GTH,
truncation=True)

 result[‘labels’] = examples[‘label’]

 return result

 processed_dataset = raw_dataset.map(_
preprocess_fn, batched=True, batch_size=1)

 return processed_dataset

def nncf_quantize(model, inputs):

 INPUT_NAMES = [key for key in inputs.keys()]

 data_source = create_data_source()

 def transform_fn(data_item):

 inputs = {

 name: np.asarray([data_item[name]],
dtype=np.int64) for name in INPUT_NAMES

 }

 return inputs

 calibration_dataset = nncf.Dataset(data_source,
transform_fn)

 # Quantize the model. By specifying model_
type, we specify additional transformer patterns
in the model.

 quantized_model = nncf.quantize(model,
calibration_dataset,

 model_
type=ModelType.TRANSFORMER)

 compressed_model_xml = Path(MODEL_DIR) /
“quantized_bert_base_cased.xml”

 ov.save_model(quantized_model, compressed_
model_xml)

if __name__ == ‘__main__’:

 input_shape = ov.PartialShape([1, 512])

 input_info = [(“input_ids”, input_shape, np.
int64),(“attention_mask”, input_shape, np.
int64),(“token_type_ids”, input_shape, np.int64)]

 default_input = torch.ones(1, MAX_SEQ_LENGTH,
dtype=torch.int64)

 inputs = {

 “input_ids”: default_input,

 “attention_mask”: default_input,

 “token_type_ids”: default_input,

 }

 model = load_model(inputs, input_info)

quantized_model = nncf_quantize(model, inputs)

4

		 Notices & Disclaimers

	 ¹	The NCA-4240B was used in the testing and is based on the 14th Gen Intel i9-14900 CPU. This processor has Intel DL Boost and the AVX_VNNI instruction sets. This instruction set allows
the CPU to work with all the major AI frameworks such as TensorFlow, PyTorch, ONNX and OpenVINO by default. The inference latency can be boosted after the model is quantized to INT8.
With Intel® Extension for TensorFlow*, the CPU can offload the AI workload from the CPU to the iGPU which reduces the inference latency.

		 Performance varies by use, configuration and other factors. Learn more on the Performance Index site.
		 Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be absolutely secure.
		 Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
		 Intel technologies may require enabled hardware, software or service activation.
		 No product or component can be absolutely secure.
		 Your costs and results may vary.
		 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
		 0524/TM/DJA/PDF	  Please Recycle	 359970-001US

Solution Brief | Lanner Delivers AI Security Appliance for Network Edge

The BERT base model was benchmarked with 512 max tokens
inference time under Lanner NCA-4240 P-core and E-core.
Similar to the testing done for the MalConv model, the
offloading of the AI workload to the iGPU was done using
commands with no new code needed. The command will be

similar to # numactl -C 0 benchmark_app -m models/
quantized_bert_base_cased.xml -d GPU -hint latency
-shape “[1, 512]”

The benchmark for the BERT base case model with 512 input
tokens:

Framework Platform
Latency (ms)

Performance Improvement
INT8 vs FP32 W/oneDNN

FP32 model INT8 model

OpenVINO
(2023.2.0)

Lanner NCA-
4240

1 P-core 652.30 253.04 2.58 X

1 E-core 1787.67 956.48 1.87 X

iGPU 119.35 71.14 1.68 X

The AI inference latency can be boosted up to 2.58X after
using OpenVINO NNCF to quantize the model. The AI
inference latency under the iGPU is as low as 71.14ms. That is
25.13X boost from using 1 E-core to using iGPU and without
any code changes.

Conclusion
The benchmarks run in this paper make the case for the Lanner
NCA-4240 being a good choice for AI NGFW with many options
for running AI workloads. The NCA-4240 can benefit from
Intel’s latest instruction sets and rely on Intel AI ecosystem to
boost AI inference performance when running either P-core
and E-core. Customers also can save core resources by
offloading their AI workloads to iGPU to further improve AI
performance without any code changes. The NCA-4240 is a
good choice for customers to democratize AI for NGFWs.

Learn More

Network Security Appliance NCA-4240

Intel® Network Builders

14th Gen Intel Core desktop processors

5

https://www.lannerinc.com/products/network-appliances/x86-rackmount-network-appliances/nca-4240
https://networkbuilders.intel.com
https://www.intel.com/content/www/us/en/products/details/processors/core.html

