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In the last 10 years, firewalls have evolved and added new features to provide better 
defense against fast changing cybersecurity threats. 

Firewalls were originally designed to examine inbound packet payloads against a 
static database of security policies and rules to allow or deny access to the enterprise 
network based on those rules. With improvements in virtualization software and 
CPU performance, firewalls can do this packet inspection at wire speed on Intel® 
architecture CPUs. 

Firewalls are placed at network ingress points and thus are the first line of defense. 
Because of the importance of the firewall, technology has evolved to add new security 
services that can leverage packet lookup and database capabilities. These next 
generation firewalls (NGFW) combine firewall capabilities with other security services 
including antivirus, intrusion protection system, application identification and others. 

Now NGFWs are evolving again to stay ahead of a new class of cybersecurity threats 
such as ransomware, zero-day attacks, phishing attacks as well as to do a better job 
against ongoing threats such as distributed denial of service (DDoS) attacks. This 
firewall evolution uses artificial intelligence / machine learning (AL/ML) to make 
the rules database more dynamic. New AI-NGFWs now feature AI-driven detection 
capabilities that can help it recognize and react to cyber threats more quickly.

With this capability, the AI-NGFW can be trained on a massive database of known 
threats that allows it to infer new threat variants and respond automatically to stop 
a threat. The use of AI also allows the NGFW to efficiently respond to threats.

NGFWs have long been deployed in branch offices and other locations at the edge 
of the network in order to harden these potential paths for a cyber-attack. But adding 
AI to these systems means increasing the compute performance required to run 
these applications.

Lanner Electronics, an Intel® Network Builders ecosystem member, has developed 
the NCA-4240, a network security appliance with the features and performance to 
enable AI-powered NGFWs running in branch offices or network edge locations to 
fortify these network locations with a system that can proactively monitor and adapt 
to evolving cyber threats in real-time. 

Lanner NCA-4240 Delivers Branch Office AI-NGFWs
The Lanner NCA-4240 is a 1U rackmount appliance (see Figure 1) that is designed 
for branch office applications with power-efficient performance and extensive 
networking. The server features a built-in 1 GbE RJ45 port via Intel® Ethernet 
Controller I219 and eight 2.5 GbE RJ45 ports via an embedded Intel® Ethernet 
Controller I226. Additional connectivity is available via a slot that can support a 
discrete network interface card with speeds up to 100GbE.

Lanner NCA-4240, based on 14th Gen Intel® Core™ desktop processors, is optimized 
with performance for AI-based next-generation firewall (NGFW) and cost, power 
consumption, and form factor for branch office applications
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Three pairs of Gen 3 bypass connections are available for 
redundant out-of-band communications that is a requirement 
to maintain communications if the networking ports are 
disabled. With these bypass ports, traffic can continue to be 
forwarded through the system.

The server has fast memory supporting up to 64GB of DDR5 
4800 MHz RAM via two 288-pin DIMM, which is essential to 
support the compute-heavy AI-NGFW workloads. For 
storage, the server supports two 2.5” HDD/SSD storage 
modules. The server can support additional features via PCIe 
x8 or M.2 slots.

Performance from 14th Gen Intel® Core™ 
Desktop Processor Family 
The Lanner NCA-4240 server is based on 14th Gen Intel Core 
desktop processor family, which feature a hybrid architecture 
combining performance-cores (P-cores) and efficient-cores 
(E-cores), on a single processor die with a maximum of up to 
24 cores (eight Performance-cores and 16 Efficient-cores) 
and up to 32 threads. Models in the CPU family have a very 
energy efficient 65 Watt thermal design power (TDP).

Integrated GPU for AI Processing
The CPUs offer enhanced AI processing power via an 
integrated Intel® UHD Graphics 770 GPU. This iGPU 
functionality uses the Intel® Xe Architecture to boost the 
performance of AI applications by delivering faster inferencing 
for network security workloads. 

The GPUs feature 32 graphics execution units allowing a 
high degree of parallelization for AI workloads, combined 
with built-in AI acceleration from Intel® Deep Learning Boost 
(Intel® DL Boost) and the Intel® Distribution of OpenVINO™ 
toolkit. The use of integrated GPU offers significant AI 
performance to meet branch office requirements and offers 
a cost-effective solution by bringing the overall total cost of 
operation (TCO) down as it does not need a discrete GPU 
card for AI.

The CPU also features PCIe 5.0 ready/PCIe 4.0 slots for 
additional functionality, USB 3.2 Gen 2x2 ports and support 
for discrete Wi-Fi 6E. 

Figure 1. Lanner NCA-4240 front view. 

Figure 2. NCA-4240 in a typical branch office AI-NGFW application. 
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As shown in Figure 2, the Lanner NCA-4240 empowers AI-
driven NGFWs at the enterprise edge. In this picture, data 
traffic from network users (on the left) passes through the 
NCA-4240 where all seven layers of each packet are examined 
against the dynamic databases shown in purple. The use of AI 
means these databases are updated based on AI training. The 
performance of the server and its low power consumption 
enables AI-based NGFWs from any third-party ISV to run on 
the systems and improves the software’s capacity to identify, 
counteract, and alleviate advanced and evolving cyber threats.

Test Set Up
To show the AI inference performance under NCA-4240, 
Lanner and Intel chose to test¹ some typical AI-NGFW use cases 
that utilize NGFW from four industry-leading vendors. The use 
cases are email phishing and malware portable executable (PE). 
The tests measured latency using three different AI frameworks: 

TensorFlow, ITEX and Open VINO. The 14th Gen Intel® Core™ 
desktop processor inside the Lanner NCA-4240 was configured 
in a number of ways to examine the performance using the iGPU 
and the P-core and E-core. The iGPU offered significantly lower 
latency figures at both FP32 and INT8 then either of the two 
CPU cores tested.

For the PE tests, the open-source MalConv model was used 
(https://github.com/elastic/ember/tree/master/malconv). 
First, the H5 model was converted to the FP32 model and then 
used Intel® Neural Compressor to quantize it to the INT8 model. 
Detail codes and methods can be found in this downloadable 
PDF. We benchmarked the NCA-4240 using one E-core and 
one P-core.

From the results, the performance can be boost up to 3.03 x 
and the inference time can be less than 11.48 ms by quantized 
model to INT8 by using Intel Neural Compressor. 

Framework Platform
Latency (ms)

Performance Improvement
INT8 vs FP32 W/oneDNNFP32 w/oneDNN INT8

TensorFlow 
(2.14.0)

Lanner NCA-
4240

(Turbo on)

1 P-core 34.73 11.48 3.03 X

1 E-core 80.77 42.85 1.88 X

The tests used ITEX to offload the AI workload to iGPU to 
further improve the AI inference performance. Here are the 
steps (details can be found at https://github.com/intel/intel-
extension-for-tensorflow):

Step 1: Install iGPU driver, details steps can be found at (https://
github.com/intel/compute-runtime)

Step 2: Install Intel® oneAPI Base Toolkit 2024.0.0

# wget https://registrationcenter-download.intel.
com/akdlm//IRC_NAS/20f4e6a1-6b0b-4752-b8c1-
e5eacba10e01/l_BaseKit_p_2024.0.0.49564.sh

# sh l_BaseKit_p_2024.0.0.49564.sh

# source /opt/intel/oneapi/compiler/latest/env/vars.
sh

# source /opt/intel/oneapi/mkl/latest/env/vars.sh

Step 3:

# apt install -y clinfo

# clinfo   //Check driver status with clinfo

# apt install -y intel-gpu-tools

# intel_gpu_top  //# Inspect iGPU status and 
monitor the GPU usage and frequency status.

From there it is possible to offload the AI workload from the 
CPU to the iGPU with zero code changes by only running the 
following command –

# pip install intel-extension-for-tensorflow[xpu] 
==2.14.0.2

Then iGPU can be used to do AI inference. 

Framework Platform
Latency (ms) Performance Improvement

INT8 vs FP32 W/oneDNNFP32 w/oneDNN INT8

ITEX (2.14.0.2) Lanner NCA-
4240 iGPU 10.47 5.19 2.02 X
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The AI inference latency can be further improved to 5.19ms. 
That is 15.56X boost from using 1 E-core to using iGPU and 
with zero code changes.

A similar test for phishing was also run using the bidirectional 
encoder representations from transformers (BERT) model. 
BERT is a neural network model that is trained to detect 
phishing email from text within the email.

In this test, we used OpenVINO as deep learning framework 
instead of TensorFlow. The following codes can use OpenVINO 
NNCF to quantize the model.

import os

from pathlib import Path

import datasets

import numpy as np

import nncf

from nncf.parameters import ModelType

import openvino as ov

import torch

f r o m  t r a n s f o r m e r s  i m p o r t 
BertForSequenceClassification, BertTokenizer

MODEL_DIR = “models”

os.makedirs(MODEL_DIR, exist_ok=True)

MAX_SEQ_LENGTH = 512

def load_model(inputs, input_info):

    ir_model_xml = Path(MODEL_DIR) / “bert-base-
cased.xml”

    core = ov.Core()

    torch_model = BertForSequenceClassification.
from_pretrained(‘bert-base-cased’)

    torch_model.eval

    # Convert the PyTorch model to OpenVINO IR 
FP32.

    if not ir_model_xml.exists():

        model = ov.convert_model(torch_model, 
example_input=inputs, input=input_info)

        ov.save_model(model, str(ir_model_xml))

    else:

        model = core.read_model(ir_model_xml)

    return model

def create_data_source():

    raw_dataset = datasets.load_dataset(‘glue’, 
‘mrpc’, split=’validation’)

    tokenizer = BertTokenizer.from_pretrained(‘bert-
base-cased’)

    def _preprocess_fn(examples):

        texts = (examples[‘sentence1’], 
examples[‘sentence2’])

        result = tokenizer(*texts, padding=’max_
le n g t h’,  m a x _ le n g t h = M A X _ SE Q _ L E N GTH, 
truncation=True)

        result[‘labels’] = examples[‘label’]

        return result

    processed_dataset = raw_dataset.map(_
preprocess_fn, batched=True, batch_size=1)

    return processed_dataset

def nncf_quantize(model, inputs):

    INPUT_NAMES = [key for key in inputs.keys()]

    data_source = create_data_source()

    def transform_fn(data_item):

        inputs = {

            name: np.asarray([data_item[name]], 
dtype=np.int64) for name in INPUT_NAMES

        }

        return inputs

    calibration_dataset = nncf.Dataset(data_source, 
transform_fn)

    # Quantize the model. By specifying model_
type, we specify additional transformer patterns 
in the model.

    quantized_model = nncf.quantize(model, 
calibration_dataset,

                                    model_
type=ModelType.TRANSFORMER)

    compressed_model_xml = Path(MODEL_DIR) / 
“quantized_bert_base_cased.xml”

    ov.save_model(quantized_model, compressed_
model_xml)

if __name__ == ‘__main__’:

    input_shape = ov.PartialShape([1, 512])

    input_info = [(“input_ids”, input_shape, np.
int64),(“attention_mask”, input_shape, np.
int64),(“token_type_ids”, input_shape, np.int64)]

    default_input = torch.ones(1, MAX_SEQ_LENGTH, 
dtype=torch.int64)

    inputs = {

        “input_ids”: default_input,

        “attention_mask”: default_input,

        “token_type_ids”: default_input,

    }

    model = load_model(inputs, input_info)

quantized_model = nncf_quantize(model, inputs)
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The BERT base model was benchmarked with 512 max tokens 
inference time under Lanner NCA-4240 P-core and E-core. 
Similar to the testing done for the MalConv model, the 
offloading of the AI workload to the iGPU was done using 
commands with no new code needed. The command will be 

similar to # numactl -C 0 benchmark_app -m models/
quantized_bert_base_cased.xml -d GPU -hint latency 
-shape “[1, 512]”

The benchmark for the BERT base case model with 512 input 
tokens:

Framework Platform
Latency (ms)

Performance Improvement 
INT8 vs FP32 W/oneDNN 

FP32 model INT8 model

OpenVINO 
(2023.2.0)

Lanner NCA-
4240

1 P-core 652.30 253.04 2.58 X

1 E-core 1787.67 956.48 1.87 X

iGPU 119.35 71.14 1.68 X

The AI inference latency can be boosted up to 2.58X after 
using OpenVINO NNCF to quantize the model. The AI 
inference latency under the iGPU is as low as 71.14ms. That is 
25.13X boost from using 1 E-core to using iGPU and without 
any code changes.

Conclusion
The benchmarks run in this paper make the case for the Lanner 
NCA-4240 being a good choice for AI NGFW with many options 
for running AI workloads. The NCA-4240 can benefit from 
Intel’s latest instruction sets and rely on Intel AI ecosystem to 
boost AI inference performance when running either P-core 
and E-core. Customers also can save core resources by 
offloading their AI workloads to iGPU to further improve AI 
performance without any code changes. The NCA-4240 is a 
good choice for customers to democratize AI for NGFWs.

Learn More

Network Security Appliance NCA-4240

Intel® Network Builders

14th Gen Intel Core desktop processors
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https://www.lannerinc.com/products/network-appliances/x86-rackmount-network-appliances/nca-4240
https://networkbuilders.intel.com
https://www.intel.com/content/www/us/en/products/details/processors/core.html

